News
Home / News / PAC vs Alum: Complete Comparison Guide 2026

PAC vs Alum: Complete Comparison Guide 2026

Jan. 21, 2026

PAC vs Alum comparison for water treatment coagulants

Choosing between Polyaluminum Chloride (PAC) and Aluminum Sulfate (Alum) is one of the most important decisions for water treatment facilities. While both are aluminum-based coagulants that remove turbidity and contaminants, they differ significantly in performance, cost-effectiveness, and operational complexity. This comprehensive guide provides data-driven comparisons, real-world cost analyses, and a practical decision framework to help you select the optimal coagulant for your application.


Quick Comparison Table


FactorPACAlumWinner
Dosage Required30-50% lessBaselinePAC ✅
pH Range5.0-9.06.5-7.5PAC ✅
Floc FormationFast, denseSlower, looserPAC ✅
Sludge Volume30-50% lessBaselinePAC ✅
Cold Water PerformanceExcellentPoorPAC ✅
Residual Aluminum0.05-0.1 mg/L0.3-0.5 mg/LPAC ✅
Initial CostHigherLowerAlum ✅
Total Operating CostLowerHigherPAC ✅

Verdict: PAC wins 8 out of 9 categories, making it the superior choice for most applications.


PAC versus Alum performance comparison chart


Understanding the Chemicals


What is Alum?

Chemical Name: Aluminum Sulfate [Al₂(SO₄)₃]

Form: White crystalline solid, easily soluble

How It Works:

1. Dissolves in water, releasing Al³⁺ ions

2. Hydrolyzes to form aluminum hydroxide [Al(OH)₃]

3. Forms flocs that trap suspended particles

Key Characteristics:

●     Simple inorganic salt

●     Traditional coagulant (used for 100+ years)

●     Acidic (pH 3.0-3.5 in solution)

●     Widely available globally


What is PAC?

Chemical Name: Polyaluminum Chloride [Alₙ(OH)ₘCl₍₃ₙ₋ₘ₎]

Form: Yellow/white powder or liquid, various grades

How It Works:

1. Pre-hydrolyzed aluminum polymer

2. Already contains multi-core hydroxy-aluminum complexes

3. Rapid charge neutralization upon addition

4. Forms large, dense flocs through bridging

Key Characteristics:

●     Advanced inorganic polymer

●     Pre-polymerized structure

●     Less acidic (pH 4.0-5.0)

●     Higher charge density


Detailed Performance Comparison


PAC vs Alum dosage requirements comparison



1. Dosage Efficiency

Alum Typical Dosage:

●     Drinking water: 20-50 mg/L

●     Wastewater: 80-200 mg/L

●     High turbidity: 100-300 mg/L

PAC Typical Dosage:

●     Drinking water: 10-30 mg/L (50% less)

●     Wastewater: 40-120 mg/L (50% less)

●     High turbidity: 50-180 mg/L (40% less)

Why PAC Uses Less:

●     Higher aluminum content (30% vs 8% in alum)

●     Pre-polymerized structure more efficient

●     Higher charge density

Example Calculation:

For 10,000 m³/day at 30 NTU turbidity:

Alum Required:
10,000 m³ × 40 mg/L = 400 kg/day

PAC Required:
10,000 m³ × 20 mg/L = 200 kg/day

Chemical Savings: 200 kg/day = 50%

2. pH Performance Range

Alum:

●     Optimal pH: 6.5-7.5 (narrow window)

●     Performance drops sharply outside this range

●     Significantly lowers water pH (typically 0.5-1.5 units)

●     Usually requires pH adjustment with lime/caustic

PAC:

●     Optimal pH: 5.0-9.0 (wide window)

●     Consistent performance across broader range

●     Minimal pH impact (typically 0.1-0.3 units)

●     Rarely requires pH adjustment

Cost Implications:

Water plant treating 5,000 m³/day:


Alum Scenario:
- pH drops from 7.5 to 6.0
- Lime needed: 20 mg/L = 100 kg/day
- Lime cost: 100 kg × $0.20 = $20/day
- Annual lime cost: $7,300

PAC Scenario:
- pH drops from 7.5 to 7.3
- No pH adjustment needed
- Annual savings: $7,300

3. Flocculation Performance

Floc Formation Speed:

StageAlumPAC
Rapid mix time1-2 min1-2 min
Slow mix time20-30 min15-20 min
Settling time3-4 hours2-3 hours
Total Treatment Time~4 hours~3 hours

Floc Characteristics:

Alum Flocs:

●     Smaller size (0.5-2 mm)

●     Lighter, fluffier structure

●     Settling velocity: 0.5-1.0 m/hr

●     Easily disrupted by mixing

PAC Flocs:

●     Larger size (2-5 mm)

●     Dense, compact structure

●     Settling velocity: 1.5-3.0 m/hr

●     More resistant to shear

Impact on Plant Capacity:

For existing clarifier (surface area 100 m²):

With Alum:
Overflow rate: 1.0 m/hr max
Capacity: 100 m² × 1.0 m/hr × 24 hr = 2,400 m³/day

With PAC:
Overflow rate: 2.0 m/hr possible
Capacity: 100 m² × 2.0 m/hr × 24 hr = 4,800 m³/day

Capacity Increase: 100% with PAC

4. Sludge Production

Volume Reduction:

Treating 10,000 m³/day with 100 NTU turbidity:


Alum:
- Coagulant: 50 mg/L
- pH adjustment: 25 mg/L lime
- Total chemicals: 75 mg/L
- Sludge: 750 kg dry solids/day

PAC:
- Coagulant: 25 mg/L
- No pH adjustment
- Total chemicals: 25 mg/L
- Sludge: 400 kg dry solids/day

Sludge Reduction: 47%

Sludge Disposal Cost Impact:



Annual Sludge (Alum): 274 tons
Disposal cost: $100/ton = $27,400/year

Annual Sludge (PAC): 146 tons
Disposal cost: $100/ton = $14,600/year

Annual Savings: $12,800


5. Cold Water Performance

Performance at Different Temperatures:

TemperatureAlum EfficiencyPAC Efficiency
>20°C100% (baseline)100%
10-20°C70-85%95-100%
5-10°C50-70%85-95%
<5°C30-50%70-85%

Why This Matters:

Cold water plants often must:

●     With Alum: Increase dose 50-100% in winter

●     With PAC: Increase dose only 10-20% in winter

Example (Northern climate plant):


Summer (25°C):
Alum: 30 mg/L, PAC: 15 mg/L

Winter (5°C):
Alum: 60 mg/L (100% increase)
PAC: 18 mg/L (20% increase)

Winter Chemical Cost Difference:
Alum: Double the cost
PAC: Nearly same cost


6. Residual Aluminum

Typical Residual Levels:

CoagulantTreated Water Al ResidualWHO Guideline
Alum0.3-0.5 mg/L<0.2 mg/L
PAC0.05-0.1 mg/L<0.2 mg/L

Compliance:

●     Alum: Often exceeds guideline, requires optimization

●     PAC: Consistently meets guideline

Health & Regulatory Implications:

●     Lower residual aluminum reduces health concerns

●     Easier regulatory compliance

●     Better for sensitive populations


Total Cost Comparison


Total cost analysis PAC vs Alum water treatment


Detailed Cost Analysis (10,000 m³/day plant)

Chemical Costs

Alum:



Alum dose: 40 mg/L
Price: $350/ton
Daily cost: 10,000 × 40 / 1,000,000 × $350 = $140

Lime (pH adjustment): 25 mg/L
Price: $200/ton
Daily cost: 10,000 × 25 / 1,000,000 × $200 = $50

Total Chemical: $190/day = $69,350/year


PAC:



PAC dose: 20 mg/L
Price: $550/ton
Daily cost: 10,000 × 20 / 1,000,000 × $550 = $110

pH adjustment: None needed

Total Chemical: $110/day = $40,150/year

Chemical Savings: $29,200/year


Sludge Disposal Costs



Alum Sludge: 274 tons/year × $100 = $27,400
PAC Sludge: 146 tons/year × $100 = $14,600

Sludge Savings: $12,800/year



Labor & Maintenance



Alum:
- Frequent pH monitoring/adjustment: +10 hr/week
- Sludge handling: +5 hr/week
- Total: 15 hr/week × 52 × $30/hr = $23,400/year

PAC:
- Minimal pH adjustment: +2 hr/week
- Less sludge: +2 hr/week
- Total: 4 hr/week × 52 × $30/hr = $6,240/year

Labor Savings: $17,160/year


Equipment & Energy



Alum:
- Higher corrosion = $5,000/year maintenance
- Longer treatment time = $3,000/year extra energy

PAC:
- Lower corrosion = $2,000/year maintenance
- Shorter treatment time = standard energy

Equipment Savings: $6,000/year


Total Annual Cost Summary

Cost CategoryAlumPACSavings
Chemicals$69,350$40,150$29,200
Sludge Disposal$27,400$14,600$12,800
Labor$23,400$6,240$17,160
Equipment/Energy$8,000$2,000$6,000
TOTAL$128,150$63,000$65,150

Annual Savings with PAC: $65,150 (51% reduction)

Payback Period:If switching requires $20,000 investment → Payback in 3.7 months


Decision Framework: When to Choose Each


Decision framework for choosing PAC or Alum


Choose PAC When:

Total operating cost is priorityWater pH varies significantlyCold water treatment (winter operations)Strict aluminum residual limitsSludge disposal is expensiveLimited clarifier capacity (need higher overflow rates)Automation/minimal operator attention desiredLong-term (5+ year) operation planned

Choose Alum When:

Initial capital budget extremely limitedShort-term/temporary operationVery warm water year-round (>25°C)Existing infrastructure optimized for alumAlum supply chain already establishedNo access to quality PAC supplier


Switching from Alum to PAC


Step-by-Step Transition Guide

Phase 1: Testing (2-4 weeks)

   1.Obtain PAC Samples

    ●     Request 3-5 different PAC grades

    ●     Specify your application (drinking water, wastewater, etc.)

   2.Conduct Jar Tests

    ●     Test current water with both alum and PAC

    ●     Record optimal doses, floc formation time, clarity

    ●     Measure residual aluminum

   3.Pilot Testing (if possible)

    ●     Run side-by-side for 1-2 weeks

    ●     Compare actual plant performance

    ●     Monitor all parameters

Phase 2: Preparation (1-2 weeks)

   4.Equipment Assessment

    ●     Check chemical storage compatibility

    ●     PAC requires corrosion-resistant tanks (HDPE, PP, FRP)

    ●     Verify metering pump compatibility

   5.Staff Training

    ●     Prepare new dosing calculations

    ●     Update SOPs

    ●     Train operators on different characteristics

   6.Procurement

    ●     Order initial PAC supply

    ●     Negotiate pricing (bulk discounts)

    ●     Arrange delivery schedule

Phase 3: Implementation (1 week)

   7.Initial Switchover

    ●     Start at 50% of jar test optimal dose

    ●     Monitor closely for first 24 hours

    ●     Adjust based on performance

   8.Optimization

    ●     Fine-tune dose over 3-7 days

    ●     Eliminate pH adjustment if possible

    ●     Document new optimal parameters

Phase 4: Monitoring (Ongoing)

   9.Regular Testing

    ●     Weekly jar tests initially

    ●     Monthly after stabilization

    ●     Track all cost savings


Case Studies


PAC vs Alum case study results comparison


Case 1: Municipal Water Plant - Florida

Before (Alum):

●     Capacity: 15,000 m³/day

●     Alum dose: 35 mg/L

●     Annual chemical cost: $95,000

●     Sludge disposal: $42,000/year

●     Aluminum residual: 0.4 mg/L (above limit)

After (PAC):

●     Same capacity

●     PAC dose: 18 mg/L

●     Annual chemical cost: $62,000

●     Sludge disposal: $21,000/year

●     Aluminum residual: 0.08 mg/L (compliant)

Results:

●     Total savings: $54,000/year (36%)

●     Payback period: 4.5 months

●     Regulatory compliance achieved

●     Operator workload reduced 40%


Case 2: Industrial Wastewater - Textile Plant

Before (Alum):

●     Flow: 5,000 m³/day

●     Alum: 80 mg/L + lime 40 mg/L

●     Treatment time: 4 hours

●     Annual cost: $78,000

After (PAC):

●     Same flow

●     PAC: 45 mg/L, no lime

●     Treatment time: 2.5 hours

●     Annual cost: $48,000

Results:

●     Savings: $30,000/year (38%)

●     Faster treatment = increased capacity

●     Simpler operations

●     Better cold-weather performance


Common Mistakes to Avoid


Mistake 1: Direct Dose Replacement

Wrong: "We used 40 mg/L alum, so we'll use 40 mg/L PAC"

Right: Start with jar tests, typically need 40-60% less PAC


Mistake 2: Ignoring pH Adjustment

Wrong: Keep adding lime as before

Right: PAC often eliminates need for pH adjustment, test first


Mistake 3: Using Wrong PAC Grade

Wrong: Buying cheapest PAC available

Right: Match PAC grade (basicity, Al content) to application


Mistake 4: Not Training Staff

Wrong: Switch without operator training

Right: Comprehensive training on different behavior


Mistake 5: Inadequate Testing

Wrong: Switch based on sales pitch alone

Right: Always conduct jar tests and pilot trials


FAQ


Q: Is PAC safe for drinking water?
A: Yes. PAC is approved by WHO and NSF for potable water. Produces lower aluminum residuals than alum.


Q: Can I mix PAC and alum together?
A: Not recommended. Use one or the other. Switching should be complete transition.


Q: How long does PAC solution last?
A: Liquid PAC: 6-12 months. Powder PAC: 18-24 months. Prepared solutions: 24-48 hours.


Q: Will PAC work in my existing equipment?
A: Usually yes, but check material compatibility. PAC is less corrosive than alum.


Q: Is PAC environmentally better than alum?
A: Yes. Less sludge, lower residuals, no sulfate addition, better for aquatic life.


Q: What if PAC costs more per kg?
A: Focus on cost per m³ treated, not per kg. Total operating cost almost always favors PAC.


Summary


PAC outperforms alum in 8 out of 9 categories
Total operating cost 30-50% lower with PAC
Faster treatment, less sludge, simpler operations
Better cold-water performance
Lower aluminum residuals for compliance
Payback period typically 3-6 months

The Choice is Clear: For most applications, PAC is the superior coagulant delivering better performance and lower total cost despite higher unit price.


Copyright © 2024 Tairan Chemical. All rights reserved.

Hot Products

WeChat
WeChat